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allow their use in analyzing periodic structures where the elec-
tric or magnetic surface current must be allowed to flow across
unit cell boundaries. Examples of frequency selective surfaces
with this requirement include strip grids and meanderline po-

larizers.

Any approach that cannot handle overlapping
elements of arbitrary shape has a serious flaw.

Ben A. Munk (1]

I. INTRODUCTION

The triangle subdomain basis functions introduced by
Rao, Wilton, and Glisson in 1982 [2] are probably the
most popular choice when using the method of moments
to solve surface integral equations for arbitrarily shaped ob-
jects. Several authors have discussed their use when an-
alyzing frequency selective surfaces (FSSs) [3], [4]. For
the most part there is no mention of the issues that arise
when attempting to model structures for which currents
fiow through unit ceil boundaries. Apparently the previous
researchers have restricted consideration to elements with
metallization patterns that lie completely within the unit
cell. However, the capability to model extended metalliza-
tion is required for certain FSS geometries such as infinite
strip grids and meanderline polarizers, and also to model
currents on bodies of revolution. In [5] the correct behavior
was enforced for currents on a body of revolution by copy-
ing a portion of the triangulation along the cut line of the
developed geometric figure. Here we take a different ap-
proach. We extend the definition of the basis functions to
include not only adjacent face-pairs of the triangulated sur-
face, but also nonadjacent pairs, each member triangle of

which contains an edge lying on the boundary of the unit

cell. We show below that enforcing the quasi-periodicity
condition on the surface currents requires incorporating a
phase shift factor into the definition of the basis functions.
With these modifications their application to periodic struc-
tures is both natural and efficient.

II. BASIS FUNCTION FORMULATION
A. Theory

This discussion will be limited to planar frequency se-
lective surfaces that are periodic in two spatial directions.

The application of these ideas to bodies of revolution or
other structures periodic in only one dimension is straight-
forward.

We consider a periodic structure that is invariant to trans-
lations of the form r — r 4+ ms| + ns2, where m and n are
arbitrary integers and s and s are the direct lattice vectors,
a pair of real vectors satisfying

51°2=52-2=0, s xs2=A>0. (€8]

Due to the assumed quasi-periodic nature of the excitation,
all fields and currents satisfy the Floquet boundary condi-
tion

V(r+msy+nsy) = V(r)e /v vy 0 e 7 (2)

where ¥ and v, the incremental phase shifts, are a pair of
real numbers determined by the nature of the excitation.

Construction of the basis functions begins with a triangu-
lation of the metallization pattern (for electric surface cur-
rents) or its complementary area (for magnetic surface cur-
rents) within the unit cell (the parallelogram defined by s
and s») of the structure. In [2] a basis function is defined
over each pair of triangles which share a common edge. In
this work, we include not only these adjacent pairs of trian-
gles, but also those pairs of triangles which would be adja-
cent if one of the pair were translated by s or s2 from its
actual position. Each member of this pair thus contains an
edge lying on the unit cell boundary.

Consider first a typical pair of adjacent triangles; their
common edge is not on the boundary of the unit cell. Fol-
lowing [2], Fig. 1 shows two such triangles, T,} and T,;,
which comprise the support of the mth basis function and
which share an interior edge of the triangulated surface.
Points in T, may be designated by either the position vec-
tor r which locates them with respect to the global origin,
or by p;t, which is defined with respect to the free vertex
of T;}. The vector p, is defined similarly for pointsin T,
except that it is directed towards the free vertex of 7. The
basis function associated with the mth edge is then defined
as

oo
A —p ifreTt
m
Sm() =1 it 3
" %—E Py ifreT;
0 otherwise,
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Fig. 1. Triangular basis function geometry showing two triangles
with a common edge. The superscript “c” denotes the centroid of
the triangle (after [2]).

where AZ is the area of triangle 7., and 6 = 6 = 0in
this case. Note that in contrast to {2], we have not included
the common edge length /,, as a factor in our definition.
This choice leads to a useful physical interpretation of the
moment method formalism. It implies that the unknown
coefficients in the basis function expansion of the electric
(magnetic) surface current carry units of current (voltage)
and that the generalized impedance (admittance) matrix el-
ements carry units of impedance (admittance). In fact, the
expansion coefficient /,, associated with the mth electric
current basis function in this case may be interpreted as
the total surface current crossing the defining edge. Sim-
ilarly, the expansion coefficient V,, for the mth magnetic
current basis function is total voltage drop across the asso-
ciated edge.

Apart from the edge length, this definition is similar to
that of 2] except for the introduction of the factors con-
taining O,f;. To see why these are necessary, consider the
situation shown in Fig. 2. Points (x, y) within the unit cell
are parameterized using unit cell coordinates & and 7 as fol-
lows:

Ex+yy=Es1+ns2, 0<é<1,0<p<l1. (@)
Unit cell boundaries are located at § = 0, & = 1, = 0,
and n = 1. In order to preserve the periodicity of the com-
puted currents we agree to triangulate the unit cell in such
a way that the number and location of the resulting edges
along the § = 0 and & = 1 boundaries are identical, and
similarly for the n = 0 and n =1 boundaries. A pair of
triangles 7,} and T, with edges atthe £ = Qand & = 1
boundaries, respectively, are shown in the figure. These
edges both span the same range of 7 and so are parallel and
congruent. A basis function is defined for each such pair of

Origin
Fig. 2. Triangular basis function geometry showing a pair of tri-
angles located at the £ = constant unit cell boundaries that occupy
the same range of 7.

triangles on the £ = constant or 7 = constant boundaries.
We focus attention upon the basis function f,, whose sup-
port is the union of the two triangle faces shown in the fig- .
ure. Because of the boundary condition (2) enforced on all
currents and fields in the unit cell, it must be true that the
normal current density crossing the edge at £ = 1 is equal
to that crossing the § = 0 edge multiplied by the factor
e~J¥1, Therefore, we must insist that

6, =6 — 1. &)

We will establish the convention that 6;F = 0 for all edges
except those along the £ = 1 and n = 1 unit cell bound-
aries. Therefore, for the situation shown in Fig. 2 we have
6,, = - and similarly for all other triangles with one
edge located on the £ = 1 boundary. For triangles with an
edge on the 7 = 1 boundary we set the corresponding phase

to —yn.

B. Implementation

The definitions for the modified RWG basis functions
have been incorporated into a Fortran 90 program named
“PSS” (for polarization selective surface) that uses the
mixed potential Green’s function formulation of [6].

A number of data structures are used in the program to
facilitate calculations involving the basis functions. First,
there are the standard matrices used to describe the trian-
gulation: the node list, edge/vertex list, face/vertex list, and
face/edge list. In addition, the following matrices are de-
fined to specify the basis functions:
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Fig. 3. A section of the symmetric strip geometry showing four
possible choices for the rectangular unit cell. The only require-
ment for the rectangle is that it must be of width 27. Metallized
regions are shaded.

BFE Basis function/edge list. Entries BFE(1, m) and
BFE(2, m) contain respectively the indices of the
defining edges on the “plus” and “minus” triangles
associated with basis function m. In most cases
these two edge indices are identical.
Basis function face list. BFF(1, m) and BFF(2, m)
contain respectively the index of the “plus” and
“minus” triangle faces associated with basis func-
tion m.
Edge/basis function map. EBF(m), if nonzero,
is the index of the basis function associated with
edge m. Note that several different locations in
EBF may be assigned the same value.
ECI Edge cell index, which takes one of the values
{0,1,2, 3,4} with corresponding meanings (0)
The edge does not lie on a unit cell boundary; (1)
The edge lies on the £ = 0 boundary; (2) The
edge lies on the £ = 1 boundary; (3) The edge lies
on the n = 0 boundary; (4) The edge lies on the
n = 1 boundary.
These arrays are grouped together in a derived type named
RWGDATA and are dynamically allocated as needed for a
given structure. Note that the correct value of e/% is easily
obtained for edge n by indexing into the five-element vector
[11e /Y11 ¢~/¥2] using 1 + ECI(n) as the index.

BFF

EBF

III. NUMERICAL RESULTS

As an example of the use of the modified basis func-
tions, consider the symmetric strip grid shown in Fig. 3, for
which an exact series solution is available in [7]. The unit
cell is chosen as the rectangle defined by the lattice vectors
s1 = ¥2T and 53 = y P,. Because the structure is invariant
in the y direction, P, can be chosen arbitrarily. The loca-
tion of the origin is also arbitrary. Rectangles J1 and M1
shown in the figure are customary selections if one chooses
to analyze the structure using electric (J) or magnetic (M)
surface currents, respectively. Rectangles J2 and M2 are

Fig. 4. Triangulations used for the (a) J1 and M1 unit cells, and
(b) J2 and M2 unit cells. The dimensions of the unit cells are
Py =2T, Py =T/10.

nonstandard choices, since their vertical edges do not co-
incide with symmetry planes. Nevertheless, by enforcing
proper periodicity of the currents using our modified basis
functions, these choices are as valid as the others. In fact,
it is possible to use electric or magnetic currents for any of
the four choices of unit cell. Here, though, we triangulate
the metallization (shaded regions) in unit cells J1 and J2
of Fig. 3, which are identical to the nonshaded regions of
unit cells M1 and M2. The two triangulations are shown in
Fig. 4. Each consists of 320 triangles obtained by adding
diagonals to 40 x 4 = 160 congruent rectangles. In both
parts (a) and (b) of the figure basis functions are defined for
the 40 pairs of corresponding boundary triangles adjacent
to the top and bottom edges of the unit cell. For the J2 and
M2 triangulation (part (b) of the figure), 4 additional basis
functions are also defined for corresponding triangle pairs
adjacent to the left and right edges of the unit cell.
Calculated reflection coefficient magnitudes and phases
from PSS using either electric (J1 and J2) or magnetic (M1
and M2) currents for the two triangulation schemes of Fig. 4
are compared to the exact results from [7] in Figs. 5-8. The
calculated results for J1 and J2 are identical, as are those for
M1 and M2. This should be expected since the two sets of
triangulations are actually identical except for a translation
of some of the triangles by 5. All four calculations agree
extremely well with each other and with the exact results.

IV. CONCLUSIONS

Modifications have been incorporated into the RWG tri-
angle basis functions that allow them to model periodic
structures where electric or magnetic currents flow through
unit cell boundaries. The modifications include (i) defining
basis functions for corresponding triangle pairs adjacent to
opposing unit cell boundaries, and (ii) addition of a phase
shift factor to account for the Floquet boundary condition.
Data structures needed to easily incorporate these new ba-
sis functions into working computer codes have been de-
scribed. Numerical experiments show that very accurate re-
sults are achieved using the new basis functions regardless
of the location chosen for the unit cell within the periodic
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Fig. 5. Reflection magnitude for vertical polarization. -
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Fig. 6. Reflection magnitude for horizontal polarization.
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Fig. 7. Reflection phase for vertical polarization.
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Fig. 8. Reflection phase for horizontal polarization.

structure. The basis functions have been validated for use
with both electric and magnetic surface currents.

A unit cell can always be selected for any periodic struc-
ture. In fact, the location of the unit cell is completely ar-
bitrary, although certain choices may be more convenient
than others. The use of the modified RWG basis functions
described here allows one to exploit this freedom. Com-
bined with the inherent versatility of the original RWG ba-
sis functions, incorporation of the modified basis functions
into the PSS code provides it with the capability to model
virtually any type of planar periodic structure.
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