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Abstract-Modifications to the popular Rao-Wilton-Glisson 
(RWG) triangle subdomain basis functions are described that 
allow their use in analyzing periodic structures where the elec- 
tric or magnetic surface current must be allowed to flow across 
unit cell boundaries. Examples of frequency selective surfaces 
with this requirement include strip grids and meanderline po- 
larizers. 

Any approach that cannot handle overlapping 
elements of arbitrary shape has a serious flaw. 

Ben A. Munk [1] 

I. INTRODUCTION 

The triangle subdomain basis functions introduced by 
Rao, Wilton, and Glisson in 1982 [2] are probably the 
most popular choice when using the method of moments 
to solve surface integral equations for arbitrarily shaped ob- 
jects. Several authors have discussed their use when an- 
alyzing frequency selective surfaces (FSSs) [3], [41. For 
the most part there is no mention of the issues that arise 
when attempting to model structures for which currents 
flow through unit cell boundaries. Apparently the previous 
researchers have restricted consideration to elements with 
metallization patterns that lie completely within the unit 
cell. However, the capability to model extended metalliza- 
tion is required for certain FSS geometries such as infinite 
strip grids and meanderline polarizers, and also to model 
currents on bodies of revolution. In [5] the correct behavior 
was enforced for currents on a body of revolution by copy- 
ing a portion of the triangulation along the cut line of the 
developed geometric figure. Here we take a different ap- 
proach. We extend the definition of the basis functions to 
include not only adjacent face-pairs of the triangulated sur- 
face, but also nonadjacent pairs, each member triangle of 
which contains an edge lying on the boundary of the unit 
cell. We show below that enforcing the quasi-periodicity 
condition on the surface currents requires incorporating a 
phase shift factor into the definition of the basis functions. 
With these modifications their application to periodic struc- 
tures is both natural and efficient. 

II. BASIS FUNCTION FORMULATION 

A. Theory 
This discussion will be limited to planar frequency se- 

lective surfaces that are periodic in two spatial directions. 

The application of these ideas to bodies of revolution or 
other structures periodic in only one dimension is straight- 
forward. 

We consider a periodic structure that is invariant to trans- 
lations of the form r -+ r + ms t + ns2, where m and n are 
arbitrary integers and s t and s2 are the direct lattice vectors, 
a pair of real vectors satisfying 

Sl * i = s2 *i = 0, s1 xs2=A ~-0. (1) 

Due to the assumed quasi-periodic nature of the excitation, 
all fields and currents satisfy the Floquet boundary condi- 
tion 

V(r+msl+nsz) = V(r)e-j(m+l+ntiz), Vm, n E Z (2) 

where $1 and $2, the incrementalphase shifts, are a pair of 
real numbers determined by the nature of the excitation. 

Construction of the basis functions begins with a triangu- 
lation of the metallization pattern (for electric surface cur- 
rents) or its complementary area (for magnetic surface cur- 
rents) within the unit cell (the parallelogram defined by st 
and ~2) of the structure. In [2] a basis function is defined 
over each pair of triangles which share a common edge. In 
this work, we include not only these adjacent pairs of trian- 
gles, but also those pairs of triangles which would be adja- 
cent if one of the pair were translated by s1 or s2 from its 
actual position. Each member of this pair thus contains an 
edge lying on the unit cell boundary. 

Consider first a typical pair of adjacent triangles; their 
common edge is not on the boundary of the unit cell. Fol- 
lowing.[2], Fig. 1 shows two such triangles, T$ and T;, 
which comprise the support of the mth basis function and 
which share an interior edge of the triangulated surface. 
Points in T,’ may be designated by either the position vec- 
tor r which locates them with respect to the global origin, 
or by P,$. which is defined with respect to the free vertex 
of Tz. The vector pi is defined similarly for points in T;, 
except that it is directed towards the free vertex of T;. The 
basis function associated with the mth edge is then defined 
as 

I 
ei%! 
2A,+p: ifr E T,’ 

,jG (3) 

I 

ZP” if r E T; 

0 m otherwise, 

fm(r> = 
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Fig. 1. Triangular basis function geometry showing two triangles 
with a common edge. The superscript “c” denotes the centroid of 
the triangle (after [2]). 

where A,f is the area of triangle T,f, and 92 = 0; = 0 in 
this case. -Note that in contrast to [i], we have notincluded 
the common edge length I, as a factor in our definition. 
This choice leads to a useful physical interpretation of the 
moment method formalism. It implies that the unknown 
coefficients in the basis function expansion of the electric 
(magnetic) surface current carry units of current (voltage) 
and that the generalized impedance (admittance) matrix el- 
ements carry units of impedance (admittance). In fact, the 
expansion coefficient I,,, associated with the mth electric 
current basis function in this case may be interpreted as 
the total surface current crossing the defining edge. Sim- 
ilarly, the expansion coefficient V, for the mth magnetic 
current basis function is total voltage drop across the asso- 
ciated edge. 

Apart from the edge length, this definition is similar to 
that of [2] except for the introduction of the factors con- 
taining 0,‘. To see why these are necessary, consider the 
situation shown in Fig. 2. Points (x, y) within the unit cell 
are parameterized using unit cell coordinates .$ and q as fol- 
lows: 

ix + jy = (Sl + ?pz, OL.+l,O~~<l. (4) 

Unit cell boundaries are located at .$ = 0, e = 1, 17 = 0, 
and 7 = 1. In order to preserve the periodicity of the com- 
puted currents we agree to triangulate the unit cell in such 
a way that the number and location of the resulting edges 
along the 6 = 0 and .!$ = 1 boundaries are identical, and 
similarly for the r] = 0 and r] =. 1 boundaries. A pair of 
triangles T,$ and T; with edges at the 6 = 0 and !j = 1 
boundaries, respectively, are shown in the figure. These 
edges both span the same range of r] and so are parallel and 
congruent. A basis function is defined for each such pair of 

Origin 

Fig. 2. Triangular basis function geometry showing a pair of tri- 
angles located at the 5 = constant unit cell boundaries that occupy 
the same range of 9. 

triangles on the e = constant or rl = constant boundaries. 
We focus attention upon the basis function f m whose sup- 
port is the union of the two triangle faces shown in the fig- 
ure. Because of the boundary condition (2) enforced on all 
currents and fields in the unit cell, it must be true that the 
normal current density crossing the edge at t = 1 is equal 
to that crossing the f  = 0 edge multiplied by the factor 
e -j@l. Therefore, we must insist that 

e;=e,++1. (5) 

We will establish the convention that 0,’ = 0 for a11 edges 
except those along the .$ = 1 and q = 1 unit cell bound- 
aries. Therefore, for the situation shown in Fig. 2 we have 
~9; = -$I and similarly for all other triangles with one 
edge located on the e = 1 boundary. For triangles with an 
edge on the q = 1 boundary we set the corresponding phase 
to -h. 

B. Implementation 

The definitions for the modified RWG basis functions 
have been incorporated into a Fortran 90 program named 
“PSS” (for polarization selective surface) that uses the 
mixed potential Green’s function formulation of [6]. 

A number of data structures are used in the program to 
facilitate calculations involving the basis functions. First, 
there are the standard matrices used to describe the trian- 
gulation: the node list, edge/vertex list, face/vertex list, and 
face/edge list. In addition, the following matrices are de- 
fined to specify the basis functions: 
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Fig. 3. A section of the symmetric strip geometry showing four 
possible choices for the rectangular unit cell. The only require- 
ment for the rectangle is that it must be of width 2T. Metallized 
regions are shaded. 

BFE Basis function/edge list. Entries BFE(l, m) and 
BFE(2, m) contain respectively the indices of the 
defining edges on the “plus” and “minus” triangles 
associated with basis function m. In most cases 
these two edge indices are identical. 

BFF Basis function face list. BFF(l, m) and BFF(2, m) 
contain respectively the index of the “plus” and 
“minus” triangle faces associated with basis func- 
tion 112. 

EBF Edge/basis function map. EBF(m), if nonzero, 
is the index of the basis function associated with 
edge m. Note that several different locations in 
EBF may be assigned the same value. 

EC1 Edge cell index, which takes one of the values 
(0, 1,2,3,4) with corresponding meanings (0) 
The edge does not lie on a unit cell boundary; (1) 
The edge lies on the 5 = 0 boundary; (2) The 
edge lies on the { = 1 boundary; (3) The edge lies 
on the q = 0 boundary; (4) The edge lies on the 
Q = 1 boundary. 

These arrays are grouped together in a derived type named 
RWGDATA and are dynamically allocated as needed for a 
given structure. Note that the correct value of eje; is easily 
obtained for edge n by indexing into the five-element vector 
[l 1 e-j@, 1 e-i$z] using 1 + ECI(n) as the index. 

III. NUMERICAL RESULTS 

As an example of the use of the modified basis func- 
tions, consider the symmetric strip grid shown in Fig. 3, for 
which an exact series solution is available in [7]. The unit 
cell is chosen as the rectangle defined by the lattice vectors 
s1 = 32T and s2 = jPy . Because the structure is invariant 
in the y  direction, Py can be chosen arbitrarily. The loca- 
tion of the origin is also arbitrary. Rectangles Jl and Ml 
shown in the figure are customary selections if one chooses 
to analyze the structure using electric (J) or magnetic (M) 
surface currents, respectiveiy. Rectangles 52 and M2 are 

(a) 

0’) 
Fig. 4. Triangulations used for the (a) Jl and Ml unit cells, and 
(b) 52 and M2 unit cells. The dimensions of the unit cells are 
Px = 2T, Py = T/10. 

nonstandard choices, since their vertical edges do not co- 
incide with symmetry planes. Nevertheless, by enforcing 
proper periodicity of the currents using our modified basis 
functions, these choices are as valid as the others. In fact, 
it is possible to use electric or magnetic currents for any of 
the four choices of unit cell. Here, though, we triangulate 
the metallization (shaded regions) in unit cells Jl and J2 
of Fig. 3, which are identical to the nonshaded regions of 
unit cells Ml and M2. The two triangulations are shown in 
Fig. 4. Each consists of 320 triangles obtained by adding 
diagonals to 40 x 4 = 160 congruent rectangles. In both 
parts (a) and (b) of the figure basis functions are defined for 
the 40 pairs of corresponding boundary triangles adjacent 
to the top and bottom edges of the unit cell. For the 52 and 
M2 triangulation (part (b) of the figure), 4 additional basis 
functions are also defined for corresponding triangle pairs 
adjacent to the left and right edges of the unit cell. 

Calculated reflection coefficient magnitudes and phases 
from PSS using either electric (Jl and 52) or magnetic (Ml 
and M2) currents for the two triangulation schemes of Fig. 4 
are compared to the exact results from [7] in Figs. 5-8. The 
calculated results for Jl and 52 are identical, as are those for 
Ml and M2. This should be expected since the two sets of 
triangulations are actually identical except for a translation 
of some of the triangles by s 1. All four calculations agree 
extremely well with each other and with the exact results. 

IV. CONCLUSIONS 

Modifications have been incorporated into the RWG tri- 
angle basis functions that allow them to model periodic 
structures where electric or magnetic currents flow through 
unit cell boundaries. The modifications include (i) defining 
basis functions for corresponding triangle pairs adjacent to 
opposing unit cell boundaries, and (ii) addition of a phase 
shift factor to account for the Floquet boundary condition. 
Data structures needed to easily incorporate these new ba- 
sis functions into working computer codes have been de- 
scribed. Numerical experiments show that very accurate re- 
sults are achieved using the new basis functions regardless 
of the location chosen for the unit cell within the periodic 
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Fig. 5. Reflection magnitude for vertical polarization.. 
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Fig. 6. Reflection magnitude for horizontal polarization. 
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Fig. 8. Reflection phase for horizontal polarization. Fig. 8. Reflection phase for horizontal polarization. 

structure. The basis functions have been validated for use 
with both electric and magnetic surface currents. 
structure. The basis functions have been validated for use 
with both electric and magnetic surface currents. 

A unit cell can always be selected for any periodic struc- 
ture. In fact, the location of the unit cell is completely ar- 
bitrary, although certain choices may be more convenient 
than others. The use of the modified RWG basis functions 
described here allows one to exploit this freedom. Com- 
bined with the inherent versatility of the original RWG ba- 
sis functions, incorporation of the modified basis functions 
into the PSS code provides it with the capability to model 
virtually any type of planar periodic structure. 
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Fig. 7. Reflection phase for vertical polarization. 
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